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Abstract. We examine the characteristics of quantum jumps in a Raman (A) system driven 
by two coherent fields in terms of the joint probability for successive arrivals of photons. In 
particular. we derive lhe general expression for P(1. T I ;  0, T2; 1, T3), the probability that a 
photon is counted in the interval (t .  t + Td and (t + TL t Tl, t t TI t Tl t T3) with no photo" 
in the intermediate interval ( t  t T L ,  f t T, + Ti),  and discuss its behaviour. 

1. Introduction 

In the recent past a considerable amount of work has been reported on the observation 
of quantum jumps in a single ion using transitions either in A or V configurations of 
atomic systems [la]. The fluctuations in the photon emission in quantum jumps have 
been theoretically analysed in terms of the intensity-intensity correlations or in terms of 
the statistics of dark and bright intervals [S-201. The statistics constitute the calculation 
of the photon counting distribution P(n,  T) which describes the probability of emission of 
'n' photons in time interval T. The calculation of P ( n ,  T) requires knowledge of intensity 
correlations of all orders. However, in order to keep track of the photons emitted in given 
time intervals the joint probability P ( n l ,  Tl ;nz .  Tz;n3, T3). describing the probability of 
counting nl photons in the interval ( t ,  t+ T I ) ,  n2 photons in the interval (t  +TI;  t+ TI + Tz) 
and n3 photons in the interval (t  + TI + Tz; I + TI + fi + T3). is useful. In particular 
for the problem of successive arrival of photons, the probability P ( 1 ,  T I ;  0, Tz; 1, G) is of 
importance. 

In the present work we use the joint probability described above to characterize the 
photon emission process occurring in a three-level Raman (A) system driven coherently 
by an external field satisfying quantum jump conditions. The joint probability refers to the 
emission of photons corresponding to the excitation of the strong Rayleigh transition. 

The paper is organized as follows. In section 2, we discuss the time interval approach 
for photon statistics. In particular. we derive a general expression for a threefold generating 
function from which the required joint probability can be obtained. In section 3, we 
discuss the mathematical formulation describing various intensity correlations pertaining 
to a threelevel A system. We then derive the general expression for the joint probability 
P(1, TI; 0, T2; 1, T3) for this case. An approximate analytical form of this quantity is also 
derived which allows us to study some broad features. Finally in section 4, we discuss the 
results based on exact numerical evaluation of the joint probability. 

0305-617W95/205903+15$l9.50 @ 1995 IOP Publishing Ltd 5903 



5904 Q V Lawande et a1 

2. Photon statistics: a time interval approach 

Statistical properties of optical fields are usually analysed by photoelectron counting 
techniques. These constitute the most useful and appropriate methods for analysing the 
properties of light fields and are closest to the experimental detection techniques. 

A way of studying the statistical properties of an optical field is by considering the 
distribution of separation times between the individual photons. A systematic way for 
studying such timeinterval probabilities is through the generating function approach 6rst 
introduced by Glauber [U]. A review, which includes a formal definition and the uses of 
such generating functions, is given by Barakat and Blake [22]. 

Glauber's first-order generating function is given by 

where P(n ,  T) is the probability of registering n photocounts in the time interval [ t ,  t + TI, 
and W is related to the intensity I @ )  by 

W = q lt+T I ( t ' )  dt' (2) 

with q the quantum efficiency for detection of photons. The symbol TN denotes the time- 
ordering, normal ordering operator. It is clear that the quantity of interest P(n ,  T) is related 
to the generating function p2-231 

Note that the generating function Q(i) involves intensity correlations of all orders, which 
may be easily seen by expressing exp[-h W] as a power series in W. The photon distribution 
P(n ,  T) in resonance fluorescence from a single atom has been obtained by Mandel 1241. 
In this case the higher-order intensity correlations can be expressed as products of intensity 
correlations of second order. This property also holds for a three-level atom interacting 
with two coherent fields sharing a common level, as in the case of a A or V system. In the 
case of quantum jumps in threelevel systems, P(n,  T) yields information about statistics 
of the dark and bright intervals [lo, 191. 

The higher-order generating functions [23] may be defined by a straightforward 
generalization of (1). In particular, in connection with quantum jumps, one may be interested 
in describing the most general situation, namely, the arrival of a photon followed by a 
gap and subsequently the arrival of another photon. This quantity requires a third-order 
generating function which is defined as 

m 3  

Q ( i i , i Z , i 3 ) =  fl(l - i i ~ ' ~ ( n i , ~ ; n Z , ~ 2 ; n 3 . ~ 3 )  (4) 
","2",=0 i=l 

where P(n1, T,; nz, Tz; n3, T,) is the joint probability of registering ni photocounts in the 
time interval [ti. ti + E ] ,  (i = 1.2,3). The quantum optical definition of this generating 
function is given by 
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where Wi is given by equation (2), but defined over the range [it, tj  + E ] .  

formula 
The joint probability P (nl, TI; nz. Tz; n3, T3) is obtained from Q by the following 

Thus the third-order generating function Q is first obtained from equation (3, and 
subsequently use of equation (6) yields the joint probability distribution. The evaluation of 
Q(A1, Az, h3) is lengthy and is discussed in the appendix. 

It is shown in the appendix that the factorization property allows us to express the 
result in terms of the normalized intensity correlation of second order only. It is more 
convenient to introduce the following triple Laplace transform of Q(A1, hz, A3) denoted by 
Q@I,  Az, As): 

00 

Q(AI,Az,A~) = ~ m d T 3 e - ' 3 T ~ ~ m d T z e - ' z ~ ~  dT1 Q ( A I , A ~ , A ~ ) ~ - ~ ~ ~ ~ .  (7) 

The expression of &AI, Az, A3) is obtained in the appendix. 
Next we derive the expression for P(1, Tl;O, Tz; 1, T3), which is used to characterize 

the quantum jump behaviour in atomic systems. This is the joint probability of detecting 
one photon in the interval [tl, f l  +TI]. no photon in the interval [fz, 12 + Tz] and one photon 
in the interval 113, t3 + T31. 

Taking the Laplace transform of this quantity we have 

Now each term in the expression for Q (equation (A26)) is such so as to render an easy 
expression for which can be written as 

where Fj, xi and vp are defined in the appendix. 

f ( t )  for a problem related to quantum jumps in a threelevel system. 

3. Intensity correlations and evaluation of P(1, TI;  0, Tz; 1, T3) 

We consider a three-level A system shown in figure 1. Here we assume that the Stokes 
transition is very weak and the system is driven by two coherent fields E ,  and Ez at 
the respective transition frequencies. The transition between the levels 12) and 13) is 
also very weak since it is a dipole forbidden transition. In the present model population 
trapping does not take place since we assume V I  # 0, vz # 0. The Rabi frequencies 
associated with the fields are GI = -d13El/Ti, and GZ = -dlzEz/fi respectively. The 
intensity-intensity correlation function of the field can be expressed in terms of the 
correlation function of the atomic operators. For instance, the intensity-intensity correlation 

This is as far as we can go formally. In the next section we use the specific form of 
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Figure 1. The three-level SyStem in Raman (A)  configuntion 

function for the field emitted on the strong transition 11) + 13) can be obtained from 
y:(A13(t)A13(f + ? ) A X @  + r)A31(t)) which can be denoted by y:(&[IR(t)lR(f 4- r)]). 
Using the complete set of density matrix equations it has been shown 1191 that in the limit 
of strong driving fields such as (lGlIZ + 1Gz12)1/z >> y1, yz, V I  and UZ, the normalized 
intensity correlation on the strong transition is given by 

+- IclIz’4 [exp(-p4r) - cos(20or)exp(-&r)l. (10) 
G335 

Various decay constants in equation (10) are given by the following expressions: 

85 = (UI lC l14  + vzlGz14)/G~. 

The effective Rabi frequency Go is defined as 
Go = (IG1lz + IGzlZ)’lz. (14) 

The excited-state population in the steady state is 

I R ( ~ )  = 8sf28,. (1.2 
From the preceding equations it is clear that there exists three time scales 8;’. 8;’ and 
GO1 which determine the behaviour of the intensity correlation. The magnitude of these 
time scales depends in turn on the relative magnitudes of yl , yz and V I ,  etc. Furthermore, 
we assume that yt >> yz. VI. y and GI >> Gz. Under such conditions one can approximate 
the pi’s by 
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3.1. EvaluationofP(I,T~;O,Tz; 1 ,T j )  

We cast the above expression (10) for the intensity-intensity correlation in the following 
form for the ease of calculation: 

(17) 
b 
2 

f ( r )  = 1 + ae+' - -[e-' + e"] 
where 

Next we take the Laplace transform of f (r) with respect to f and obtain 

1 U b(z + 82) 
z z+84  ( z + t ) ( z + t * ) '  

F(z) = - + - - 

with 

The roots of D(z) = 0 are denoted by mi ( i  = 1 ,2 ,3  and 4). For further analysis we might 
need the approximate values of these roots given by 

(27) 

We now refer to our expression for p derived in section 2 (see equation (9)). Here we have 

0 1  = -2841w(lCo/G11)2 

0 3  = 4 = -E - ( ~ / ~ ) ( I G O / G I I ) ~ I .  

a = - ( ~ / 2 ) ( l ~ o / G i l ) ~  

b b  
[a  1 -  a -- -- 

[up1 = 8 4 ,  c, t* - [  2' 2 )  

The explicit expression for p can now be written in the following form: 
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in which the quantities @; and are given by 

where xi = 0, 84, 5,  r, (for i = 1 4  respectively); 

here xi = 0 and yi = 0,84.5, e* (for i = 1-4 respectively); xi = 84 and yi = B4, 5 ,  tu, (for 
i = 5-1 respectively); xi = e  and yi = E ,  $* (for i = 8, 9 respectively); x10 = yla = t*. 

The complete expression for the joint probability P (1, T I ;  0, Tz; 1. T3) may be obtained 
from equation (29) by taking the Laplace inverse of the various functions & ( z )  and @i(z). 

However, for further discussion, we need to consider only an approximate expression for 
P, where only h,z(T)  and $1.2.5(T) are involved. Explicit expressions for these functions 
are as follows: 

1 2 2 1 
x exp(wjr) [ t + ( - wj + 8 4  +-+- Oj wj +% + ;;TT;) - 2 c  ipj mj -} - wi 
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P ( 1  * T I  ; 0 r T 2 ;  1 vTg) 

5909 

Figure2. Thejoinlprobabili~P(I,T~:O,T~;1,Tj)x10~'asafunctionofinterv TI = T j  = 
T (in units of y - 1 )  with G I  = 10. = 0.0, YI = 1.0, y1 = I O P Y I .  V I  = IO-6n. Y = 0.0 
and the quantum efficiency parameter y = 1. Curves A. B, C, D correspond to the values of 
y l q  = 0.01, 0.1, 1.0, 10.0, respectively. The oscillatory character of P for very short times is 
not shown here 

where 



A 
8 

C 

Figure 3. The joint probability P ( 1 ,  TI; 0. r?; 1, T d  x IO-' 3s a function of interval TI = T, = 
T (in units of y - l )  with Gz = 0.05. The olher p m e t e r s  are the same a5 in figure 2. 

In this case, we have the following expressions for the a's and q ' s :  

Note that as t + 0, @I,&) and q I , z , S ( t )  4 0. We next examine the behaviour of 
P (1, T I ;  0, Tz; I ,  T3) for various situations. 

(i) First, we keep 'TI and T3 fixed and examine P as TZ is varied. For T2 -+ 0, @,(Tz), 
ly?(G) and W,(Tz) + 0, and we have 

P(1, TI; 0, Tz; 1, T3) + (qM2101(T1)@i(Td +a@'z(Ti)Qz(T3)). (37) 

Hence the initial value of P as a function of Tz depends on T, and T3 as expected, For 
small, as well as very large values of TI and T3, P is small. However, P attains a maximum 
for some intermediate values of  and T3. 



On the characterization of quantum jumps 

P ( 1  ,TI ; 0 , T p i  1 ,Tg 1 

591 1 

D 

Figure 4. The joint probability P(1. TI : 0. Tz: I ,  Td x IO-' BS a function of interval T2 (in units 
of y - ] )  with G I  = IO, GI = 0.0, y~ = 1.0. n = 1 0 - 6 y ~ ,  V I  = 10-6y~ and u2 = 0.0. Here we 
have taken TI = T3 = T and the curves A, B, C.  D correspond to the values of ylT = 0.5, 1.0. 
1.5. 2.0, respectively. The inset shows P ( l .  T1;O. 72: 1, T3) x as a function of T2 from 
1ogl0(ylT~) = 1.45 onwards. 

(ii) For small values of Tz, e-BIT2 and e-z@4r==fi 1 1 and hence, 

(38) 
2 
4 

~ 1 , 2 , 5 ( t )  + -[I -e-9'/'1. 

Therefore 
P(1 ,  Ti; 0, Tz; 1, T3) (ql,)*{[(I - 21,) + 21we-qT*/Zl@~(T~)@~(T~) 

f U [ 1  - zaIme-B"l;(l - e - m z  )I@z(q)@z(T3) 
- ~ ~ I , [ u J ~ ( ~ ) u J ~ ( T ~ )  + UJI  ( T I ) @ Z ( T ~ ) ~ - ~ ~ ~ ] ( ~  - e-qT2/')). (39) 

Now as T2 is increased, P decreases steadily from its initial value (37). the decreased rate 
being governed by the decay rate 412. Eventually the factor e-qfilz tends to zero and P 
attains a plateau with the value given by 

paC = ( q I & ( l -  21,)~t ( ~ 1 ) @ 1 ( ~ 3 )  + ~ ( 1 -  ~&-&n)@z(~)@Z(T3)  
-kld@Z(TI)@l(T3) + @ I ( T I ) Q ~ ( G W ' ~ ~ ~ I ) .  (40) 

(iii) For larger values of TZ where e-qr2I2 + 0 but e-J4% and e-2f14'mG are significant 
we have 

where a = (1 - 2Ia)/2Iw 



5912 Q V Lmvande er ai 

P ( 1  'TI ; 0 r T 2  ; 1 r T 3 )  

I o  

"-05.0 - 2 . 0  i . 0 '  4 .0  7 .0  1 0 . 0  

1 09!0(v,) 
Figure 5. The joint probability P ( I .  8; 0, c; 1. c) x IO-' as a function of infew; c (in 
unitr: of y - l )  with Gz = 0.05. The olhcr parameters are the same as in figw 4. The inset 
shows P(1. T,:O. E; 1. T,) x IO@ as a function of Tz from logla(ylT1) = 1.45 onwards. 

This leads to 

P(1, q; 0, Tz; 1, T3) = (qIm)*((1 - 21,)e-2a4r,T,Q~(T~)@~(T3) 
+a[e-BaT> - (e-B4E - 21me-ZkLT~ e k71 ) - 1@2(TI)@Z(T3) 

-klm[@2(T,)@p1(T3) + @ I ( T l ) @ z ( ~ 3 ) e - B 4 ~ l ] e - ~ B 4 ' n ~ ~ ) .  (44) 

It is clear from equation (44) that the probability P eventually decays to zero for very long 
times, characterized by 21,,94Tz >> 1. 

Note, however, that in the above analysis, we have set Gz = 0. The formula will still 
hold if we let 

in the above approximate expressions. These changes will give the behaviour of P for 
different values of G2. 

4. Discussion of results 

We have evaluated numerically the complete expression for the joint probability 
P(1, TI; 0, Tz; 1, E )  for the parameters of interest. The numerical results are consistent with 
the qualitative features discussed in section 3 with the help of the approximate analytical 



On the characterization of quantum jumps 5913 

expression (34). In figure 2 we show the behaviour of the joint probability with respect 
to time TI = T3 = T for various values of time TZ when no field is  applied to drive the 
weak transition 11) -+ 12)(Gz = 0). As expected on physical grounds, the probability 
shows a sharp maximum when ylT N 1. However, as the time interval (Tz) between 
successive emissions is increased, the height of the maximum decreases. This is because 
the successive photons arrive within a time interval that is of the order of y;'. Also, as 
shown in figure 3, when a field is applied to drive the weak transition 11) -+ 12) the heights 
of the maxima decrease, as compared to the previous case (Gz = O), due to the increased 
probability of shelving of the electron in the level 12). Figure 4 displays the behaviour of 
joint probability P with respect to time Tz for some fixed values of TI = = T(y1 T > 1) 
with G2 = 0. For small values of Tz, the probability P is nearly constant and thereafter it 
rapidly decreases. This decrease is essentially governed by the time constant q/2. The inset 
in figure 4, however, shows the existence of a plateau when TZ approaches the second time 
scale (- y-I) ,  During the plateau region the probability that no photon is emitted remains 
constant due to the shelving effect. Eventually, for very large values of Tz, the quantity P 
decreases to zero since an interval of that length contains both dark and bright periods of 
the quantum telegraph. Figure 5 shows the behaviour of the joint probability as a function 
of time Tz when a small field is applied to drive the transition 11) -+ 12). The behaviour 
is similar to that shown in figure 4 except that the values of P are lower because of the 
enhanced probability for the electron to be shelved in level 12). 

Appendix. Evaluation of the third-order generating function &(A,, A,, A3) 

In this appendix, we outline the steps leading to the evaluation of 
in equation (7) which is subsequently used in the main text to evaluate p .  

hz, h3) as defined 

We start with the expression 

m n n-k 
(- l)n nCk n-kC hkhmhn-k-m ( rN w; w,- w;-k -m)  , (A 1) = l + C c c T  m 1 z 3  

"=I k d  m a  

Typical terms which occur in the above expression are (TNW:), (TNW:W~"-~)  (i, j = 1-3, 
i < j )and (TNW;WPW;-'-'"). 

We evaluate the contribution of each of these terms towards d. First consider a typical 
term 
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h the step (A2) we have used the so-called factorization property valid for a single atom. 
%is property allows us to express higher-order correlations as a product of correlations of 
second order, e.g. 

(A4) 
Therefore, the knowledge of this normalized intensity correlation f ( t )  allows us to evaluate 
every other correlation. 

Q V Lawande et a1 

(T~I(ti)l(fd) = (u2f(zz - t t ) .  

We thus have 
r, 

(TNW;) = ( q l m ) ' n ! l  dt , . . . l "d t I  f i f ( t 3 - t s - 1 )  (W 
S l  

where ( I )  = I m .  
We define a triple Laplace transform 

m m 
(TNW;) = dT3 dTze-zzT1 dTl (TNW;)e-zlT1 (A61 

and using the convolution theorem we get 

(AS) 
1 00 

dT3 e-aT3 im dT2 e-ZZrt im dTl e-Irr) = -, 
z1 2 2 2 3  

(i) = j 
0 

Here F ( z )  is the Laplace transform of the normalized intensity correlation function f ( t )  
defined earlier. 

The contribution of these terms to Q is 

where Fi = F(&) .  
Next we consider terms of the type 
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In order to evaluate this we write 

Finally, we consider 

(TN : W: W;-') = 1 dil . . . l'"' dtk j I+T, t+Ti+Tx+Ty 
dtk+i 

I I+T,+T, 

Using the factorization theorem, we may write this as 

(A18a) 
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On using the standard form of f ( t )  given by 

Q V Lunmde et a1 

f ( t )  = I i- Ca,,e-”P’ 
P 

where up are complex quantities, we arrive at 

1 
K 3  = - 

(A19) 

Finally, we consider the following term in equation (7), i.e. (TN : W:W,”W,”-”-“). The 
procedure for reduction of this term is as before. We take the triple Laplace transform. The 
time ordering and factorization property yields 

(TN: W:WTW,”-k-m) = k ! m ! ( n - k - m ) ! ( q Z , ) ”  
n 

dtk+m+li’ &+,+I ’ ’  .Ltk” d4 t i  1 dtk 

After simplification the contribution to a from this term becomes 
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where 

(A25a) 

( A z b )  
Finally, adding the contributions term by term we obtain 
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