On the characterization of quantum jumps in a coherently-driven Raman system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 285903
(http://iopscience.iop.org/0305-4470/28/20/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 00:41

Please note that terms and conditions apply.

On the characterization of quantum jumps in a coherently-driven Raman system

Q V Lawande \dagger, Amitabh Joshi $\ddagger \S$ and S V Lawande \dagger
\dagger Theoretical Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India
\ddagger Department of Mathematics, UMIST, PO Box 88, Manchester M60 1QD, UK
§ Laser \& Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India

Received 10 April 1995

Abstract

We examine the characteristics of quantum jumps in a Raman (Λ) system driven by two coherent fields in terms of the joint probability for successive arrivals of photons. In particular. we derive the general expression for $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)$, the probability that a photon is counted in the interval $\left(t, t+T_{1}\right)$ and ($t+T_{1}+T_{2}, t+T_{1}+T_{2}+T_{3}$) with no photon in the intermediate interval ($t+T_{1}, t+T_{1}+T_{2}$), and discuss its behaviour.

1. Introduction

In the recent past a considerable amount of work has been reported on the observation of quantum jumps in a single ion using transitions either in Λ or V configurations of atomic systems [1-4]. The fluctuations in the photon emission in quantum jumps have been theoretically analysed in terms of the intensity-intensity correlations or in terms of the statistics of dark and bright intervals [5-20]. The statistics constitute the calculation of the photon counting distribution $P(n, T)$ which describes the probability of emission of ' n ' photons in time interval T. The calculation of $P(n, T)$ requires knowledge of intensity correlations of all orders. However, in order to keep track of the photons emitted in given time intervals the joint probability $P\left(n_{1}, T_{1} ; n_{2}, T_{2} ; n_{3}, T_{3}\right)$, describing the probability of counting n_{1} photons in the interval $\left(t, t+T_{1}\right), n_{2}$ photons in the interval ($t+T_{1} ; t+T_{1}+T_{2}$) and n_{3} photons in the interval ($t+T_{1}+T_{2} ; t+T_{1}+T_{2}+T_{3}$), is useful. In particular for the problem of successive arrival of photons, the probability $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)$ is of importance.

In the present work we use the joint probability described above to characterize the photon emission process occurring in a three-level Raman (Λ) system driven coherently by an external field satisfying quantum jump conditions. The joint probability refers to the emission of photons corresponding to the excitation of the strong Rayleigh transition.

The paper is organized as follows. In section 2, we discuss the time interval approach for photon statistics. In particular, we derive a general expression for a threefold generating function from which the required joint probability can be obtained. In section 3, we discuss the mathematical formulation describing various intensity correlations pertaining to a three-level Λ system. We then derive the general expression for the joint probability $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)$ for this case. An approximate analytical form of this quantity is also derived which allows us to study some broad features. Finally in section 4, we discuss the results based on exact numerical evaluation of the joint probability.

2. Photon statistics: a time interval approach

Statistical properties of optical fields are usually analysed by photoelectron counting techniques. These constitute the most useful and appropriate methods for analysing the properties of light fields and are closest to the experimental detection techniques.

A way of studying the statistical properties of an optical field is by considering the distribution of separation times between the individual photons. A systematic way for studying such time-interval probabilities is through the generating function approach first introduced by Glauber [21]. A review, which includes a formal definition and the uses of such generating functions, is given by Barakat and Blake [22].

Glauber's first-order generating function is given by

$$
\begin{align*}
Q(\lambda, T) & =\sum_{n=0}^{\infty}(1-\lambda)^{n} P(n, T) \\
& =\left\langle T_{\mathrm{N}} \exp [-\lambda W]\right\} \tag{1}
\end{align*}
$$

where $P(n, T)$ is the probability of registering n photocounts in the time interval $[t, t+T]$, and W is related to the intensity $I(t)$ by

$$
\begin{equation*}
W=q \int_{t}^{t+T} I\left(t^{\prime}\right) \mathrm{d} t^{\prime} \tag{2}
\end{equation*}
$$

with q the quantum efficiency for detection of photons. The symbol T_{N} denotes the timeordering, normal ordering operator. It is clear that the quantity of interest $P(n, T)$ is related to the generating function [22-23]

$$
\begin{equation*}
P(n, T)=\left.\frac{(-1)^{n}}{n!} \frac{\partial^{n} Q(\lambda)}{\partial \lambda^{n}}\right|_{\lambda=1} \tag{3}
\end{equation*}
$$

Note that the generating function $Q(\lambda)$ involves intensity correlations of all orders, which may be easily seen by expressing $\exp [-\lambda W]$ as a power series in W. The photon distribution $P(n, T)$ in resonance fluorescence from a single atom has been obtained by Mandel [24]. In this case the higher-order intensity correlations can be expressed as products of intensity correlations of second order. This property also holds for a three-level atom interacting with two coherent fields sharing a common level, as in the case of a Λ or V system. In the case of quantum jumps in three-level systems, $P(n, T)$ yields information about statistics of the dark and bright intervals [10, 19].

The higher-order generating functions [23] may be defined by a straightforward generalization of (1). In particular, in connection with quantum jumps, one may be interested in describing the most general situation, namely, the arrival of a photon followed by a gap and subsequently the arrival of another photon. This quantity requires a third-order generating function which is defined as

$$
\begin{equation*}
Q\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\sum_{n_{1} n_{2} n_{3}=0}^{\infty} \prod_{i=1}^{3}\left(1-\lambda_{i}\right)^{n_{i}} P\left(n_{1}, T_{1} ; n_{2}, T_{2} ; n_{3}, T_{3}\right) \tag{4}
\end{equation*}
$$

where $P\left(n_{1}, T_{1} ; n_{2}, T_{2} ; n_{3}, T_{3}\right)$ is the joint probability of registering n_{i} photocounts in the time interval $\left[t_{i}, t_{i}+T_{i}\right],(i=1,2,3)$. The quantum optical definition of this generating function is given by

$$
\begin{equation*}
Q\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\left\langle T_{N} \exp \left[-\sum_{i=1}^{3} \lambda_{i} W_{i}\right]\right\rangle \tag{5}
\end{equation*}
$$

where W_{i} is given by equation (2), but defined over the range $\left[t_{i}, t_{i}+T_{i}\right]$.
The joint probability $P\left(n_{1}, T_{1} ; n_{2}, T_{2} ; n_{3}, T_{3}\right)$ is obtained from Q by the following formula
$P\left(n_{1}, T_{1} ; n_{2}, T_{2} ; n_{3}, T_{3}\right)=\left(\frac{(-1)^{n_{1}+n_{2}+n_{3}}}{n_{1}!n_{2}!n_{3}!}\right) \frac{\partial^{n_{1}+n_{2}+n_{3}}}{\partial \lambda_{1}^{n_{1}} \partial \lambda_{2}^{n_{2}} \partial \lambda_{3}^{n_{3}}} Q\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \lambda_{\lambda_{1}=\lambda_{2}=\lambda_{3}=1}$.
Thus the third-order generating function Q is first obtained from equation (5), and subsequently use of equation (6) yields the joint probability distribution. The evaluation of $Q\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is lengthy and is discussed in the appendix.

It is shown in the appendix that the factorization property allows us to express the result in terms of the normalized intensity correlation of second order only. It is more convenient to introduce the following triple Laplace transform of $Q\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ denoted by $\tilde{Q}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right):$
$\tilde{Q}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\int_{0}^{\infty} \mathrm{d} T_{3} \mathrm{e}^{-z_{3} T_{3}} \int_{0}^{\infty} \mathrm{d} T_{2} \mathrm{e}^{-z_{2} T_{2}} \int_{0}^{\infty} \mathrm{d} T_{1} Q\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \mathrm{e}^{-z_{1} T_{1}}$.
The expression of $\tilde{Q}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is obtained in the appendix.
Next we derive the expression for $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)$, which is used to characterize the quantum jump behaviour in atomic systems. This is the joint probability of detecting one photon in the interval $\left[t_{1}, t_{1}+T_{1}\right]$, no photon in the interval $\left[t_{2}, t_{2}+T_{2}\right]$ and one photon in the interval $\left[t_{3}, t_{3}+T_{3}\right]$.

Taking the Laplace transform of this quantity we have

$$
\begin{gather*}
\tilde{P} \equiv \int_{0}^{\infty} \mathrm{d} T_{1} \int_{0}^{\infty} \mathrm{d} T_{2} \int_{0}^{\infty} \mathrm{d} T_{3} \exp \left(-\sum_{i} Z_{i} T_{i}\right) P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right) \\
\left.\equiv \frac{\partial^{3} \tilde{Q}}{\partial \lambda_{1} \partial \lambda_{2} \partial \lambda_{3}}\right|_{\lambda_{1}=\lambda_{2}=\lambda_{3}=1} . \tag{8}
\end{gather*}
$$

Now each term in the expression for \tilde{Q} (equation (A26)) is such so as to render an easy expression for \tilde{P} which can be written as

$$
\begin{gather*}
\tilde{P}=\frac{\left(q I_{\infty}\right)^{2}}{\left(1+q I_{\infty} F_{1}\right)^{2}\left(1+q I_{\infty} F_{3}\right)^{2}} \kappa_{3}-\frac{\left(q I_{\infty}\right)^{3}}{\left(1+q I_{\infty} F_{1}\right)^{2}\left(1+q I_{\infty} F_{2}\right)\left(1+q I_{\infty} F_{3}\right)^{2}} \kappa_{4} \\
-\frac{\left(q I_{\infty}\right)^{3}}{\left(1+q I_{\infty} F_{2}\right)\left(1+q I_{\infty} F_{3}\right)^{2}} \sum_{p} \frac{\kappa_{p}}{\left[1+q I_{\infty} F\left(z_{1}+\nu_{p}\right)\right]^{2}} \tag{9}
\end{gather*}
$$

where F_{i}, χ_{i} and ν_{p} are defined in the appendix.
This is as far as we can go formally. In the next section we use the specific form of $f(t)$ for a problem related to quantum jumps in a three-level system.

3. Intensity correlations and evaluation of $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)$

We consider a three-level Λ system shown in figure 1. Here we assume that the Stokes transition is very weak and the system is driven by two coherent fields E_{1} and E_{2} at the respective transition frequencies. The transition between the levels $|2\rangle$ and $|3\rangle$ is also very weak since it is a dipole forbidden transition. In the present model population trapping does not take place since we assume $\nu_{1} \neq 0, v_{2} \neq 0$. The Rabi frequencies associated with the fields are $G_{1}=-d_{13} E_{1} / \hbar$, and $G_{2}=-d_{12} E_{2} / \hbar$ respectively. The intensity-intensity correlation function of the field can be expressed in terms of the correlation function of the atomic operators. For instance, the intensity-intensity correlation

Figure 1. The three-ievel system in Raman (Λ) configuration.
function for the field emitted on the strong transition $|1\rangle \rightarrow|3\rangle$ can be obtained from $\gamma_{1}^{2}\left\langle A_{13}(t) A_{13}(t+\tau) A_{31}(t+\tau) A_{31}(t)\right\}$ which can be denoted by $\gamma_{1}^{2}\left\langle T_{\mathrm{N}}\left[I_{\mathrm{R}}(t) I_{\mathrm{R}}(t+\tau)\right]\right\rangle$. Using the complete set of density matrix equations it has been shown [19] that in the limit of strong driving fields such as $\left(\left|G_{1}\right|^{2}+\left|G_{2}\right|^{2}\right)^{1 / 2} \gg \gamma_{1}, \gamma_{2}, \nu_{1}$ and ν_{2}, the normalized intensity correlation on the strong transition is given by

$$
\begin{align*}
& \frac{\left\langle T_{\mathrm{N}}\left[I_{\mathrm{R}}(t) I_{\mathrm{R}}(t+\tau)\right]\right\rangle}{\left\langle I_{\mathrm{R}}(t)\right\rangle\left\langle I_{\mathrm{R}}(t+\tau)\right\rangle}=f(\tau)=\left[1-\exp \left(-\beta_{4} \tau\right)\right] \\
& \quad+\frac{\left|G_{1}\right|^{2} \beta_{4}}{G_{0}^{2} \beta_{5}}\left[\exp \left(-\beta_{4} \tau\right)-\cos \left(2 G_{0} \tau\right) \exp \left(-\beta_{2} \tau\right)\right] \tag{10}
\end{align*}
$$

Various decay constants in equation (10) are given by the following expressions:
$\beta_{2}=\left(\gamma_{1}+\gamma_{2}\right)+\left[\left\{\frac{\gamma_{1}\left|G_{2}\right|^{2}}{2 G_{0}^{2}}+\frac{\nu_{1}}{4 G_{0}^{4}}\left(2\left|G_{2}\right|^{4}+\left|G_{1}\right|^{2}\left|G_{2}\right|^{2}\right)\right\}+(1 \rightleftarrows 2)\right]$
$\beta_{4}=\left[\left\{\frac{\gamma_{1}\left|G_{2}\right|^{2}}{G_{0}^{2}}+\frac{\nu_{1}}{2 G_{0}^{4}}\left(\left|G_{2}\right|^{4}+2\left|G_{1}\right|^{4}\right)\right\}+(1 \rightleftarrows 2)\right]$
$\beta_{5}=\left(\nu_{1}\left|G_{1}\right|^{4}+v_{2}\left|G_{2}\right|^{4}\right) / G_{0}^{4}$.
The effective Rabi frequency G_{0} is defined as

$$
\begin{equation*}
G_{0}=\left(\left|G_{1}\right|^{2}+\left|G_{2}\right|^{2}\right)^{1 / 2} \tag{14}
\end{equation*}
$$

The excited-state population in the steady state is

$$
\begin{equation*}
I_{\mathrm{R}}(\infty)=\beta_{5} / 2 \beta_{4} \tag{15}
\end{equation*}
$$

From the preceding equations it is clear that there exists three time scales $\beta_{2}^{-1}, \beta_{4}^{-1}$ and G_{0}^{-1} which determine the behaviour of the intensity correlation. The magnitude of these time scales depends in turn on the relative magnitudes of γ_{1}, γ_{2} and ν_{1}, etc. Furthermore, we assume that $\gamma_{1} \gg \gamma_{2}, \nu_{1}, \nu_{2}$ and $G_{1} \gg G_{2}$. Under such conditions one can approximate the β_{i} 's by

$$
\begin{align*}
& \beta_{2} \approx \frac{3}{2} \gamma_{1}+\gamma_{2}+\frac{\nu_{1}\left|G_{2}\right|^{2}}{4\left|G_{1}\right|^{2}} \approx \frac{3}{2} \gamma_{1} \tag{16a}\\
& \beta_{4} \approx \frac{\gamma_{1}\left|G_{2}\right|^{2}}{\left|G_{1}\right|^{2}}+\gamma_{2}+\nu_{1}+\frac{\nu_{2}}{2} \tag{16b}\\
& \beta_{5} \approx \nu_{1}+\nu_{2} \frac{\left|G_{2}\right|^{4}}{\left|G_{1}\right|^{4}}-\frac{2 \nu_{1}\left|G_{2}\right|^{2}}{\left|G_{1}\right|^{2}} \approx \nu_{1} \tag{16c}
\end{align*}
$$

3.1. Evaluation of $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)$

We cast the above expression (10) for the intensity-intensity correlation in the following form for the ease of calculation:

$$
\begin{equation*}
f(t)=1+a \mathrm{e}^{-\beta_{4} t}-\frac{b}{2}\left[\mathrm{e}^{-\xi}+\mathrm{e}^{\xi^{*}}\right] \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
b=\frac{\left|G_{1}\right|^{2} \beta_{4}}{G_{0}^{2} \beta_{5}}=\frac{\left|G_{1}\right|^{2}}{2 G_{0}^{2} I_{\infty}} \quad a=b-1 \quad \xi=\left(\beta_{2}+2 \mathrm{i} G_{0}\right) \tag{18}
\end{equation*}
$$

Next we take the Laplace transform of $f(t)$ with respect to t and obtain

$$
\begin{equation*}
F(z)=\frac{1}{z}+\frac{a}{z+\beta_{4}}-\frac{b\left(z+\beta_{2}\right)}{(z+\xi)\left(z+\xi^{*}\right)} \tag{19}
\end{equation*}
$$

We define

$$
\begin{equation*}
\frac{1}{1+q I_{\infty} F(z)}=\frac{N(z)}{D(z)} \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
& N(z)=z\left(z+\beta_{4}\right)(z+\xi)\left(z+\xi^{*}\right) \tag{21}\\
& D(z)=z^{4}+d_{3} z^{3}+d_{2} z^{2}+d_{1} z+d_{0} \equiv 0 \tag{22}
\end{align*}
$$

with

$$
\begin{align*}
& d_{0}=q I_{\infty}\left[\beta_{2}^{2}+4 G_{0}^{2}\right] \beta_{4} \tag{23}\\
& d_{1}=\beta_{4}\left[\beta_{2}^{2}+4 G_{0}^{2}\right]+q I_{\infty}\left[\left(\beta_{2}^{2}+4 G_{0}^{2}\right) b+\beta_{2} \beta_{4}(1-a)\right] \tag{24}\\
& d_{2}=\left(\beta_{2}^{2}+4 G_{0}^{2}\right)+2 \beta_{2} \beta_{4}+q I_{\infty}\left(\beta_{2} b-\beta_{4} a\right) \tag{25}\\
& d_{3}=2 \beta_{2}+\beta_{4} \tag{26}
\end{align*}
$$

The roots of $D(z)=0$ are denoted by $\omega_{i}(i=1,2,3$ and 4). For further analysis we might need the approximate values of these roots given by

$$
\begin{align*}
& \omega_{1}=-2 \beta_{4} I_{\infty}\left(\left|G_{0} / G_{1}\right|\right)^{2} \quad \omega_{2}=-(q / 2)\left(\left|G_{0} / G_{1}\right|\right)^{2} \\
& \omega_{3}=\omega_{4}^{*}=-\left[\xi-(q / 4)\left(\left|G_{0} / G_{1}\right|\right)^{2}\right] \tag{27}
\end{align*}
$$

We now refer to our expression for \tilde{P} derived in section 2 (see equation (9)). Here we have

$$
\begin{equation*}
\left\{\nu_{p}\right\} \equiv \beta_{4}, \xi, \xi^{*} \quad\left\{a_{p}\right\}=\left\{a,-\frac{b}{2},-\frac{b}{2}\right\} . \tag{28}
\end{equation*}
$$

The explicit expression for \tilde{P} can now be written in the following form:

$$
\begin{aligned}
\tilde{P}=\left(q I_{\infty}\right)^{2}\{ & \left.\frac{\Phi_{1}\left(z_{1}\right) \Phi_{1}\left(z_{3}\right)}{z_{2}}+\frac{a \Phi_{2}\left(z_{1}\right) \Phi_{2}\left(z_{3}\right)}{z_{2}+\beta_{4}}-\frac{b \Phi_{3}\left(z_{1}\right) \Phi_{3}\left(z_{3}\right)}{2\left(z_{2}+\xi\right)}-\frac{b \Phi_{4}\left(z_{1}\right) \Phi_{4}\left(z_{3}\right)}{2\left(z_{2}+\xi^{*}\right)}\right\} \\
& -\left(q I_{\infty}\right)^{3}\left\{\Phi_{1}\left(z_{1}\right) \Psi_{1}\left(z_{2}\right)+a \Phi_{2}\left(z_{1}\right) \Psi_{2}\left(z_{2}\right)\right. \\
& \left.-\frac{b}{2} \Phi_{3}\left(z_{1}\right) \Psi_{3}\left(z_{2}\right)-\frac{b}{2} \Phi_{4}\left(z_{1}\right) \Psi_{4}\left(z_{2}\right)\right\} \Phi_{1}\left(z_{3}\right) \\
& -a\left(q I_{\infty}\right)^{3}\left\{\Phi_{1}\left(z_{1}+\beta_{4}\right) \Psi_{2}\left(z_{2}\right)+a \Phi_{2}\left(z_{1}+\beta_{4}\right) \Psi_{5}\left(z_{2}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.-\frac{b}{2} \Phi_{3}\left(z_{1}+\beta_{4}\right) \Psi_{6}\left(z_{2}\right)-\frac{b}{2} \Phi_{4}\left(z_{1}+\beta_{4}\right) \Psi_{7}\left(z_{2}\right)\right\} \Phi_{2}\left(z_{3}\right) \\
& +\frac{b}{2}\left(q I_{\infty}\right)^{3}\left\{\Phi_{1}\left(z_{1}+\xi\right) \Psi_{3}\left(z_{2}\right)+a \Phi_{2}\left(z_{1}+\xi\right) \Psi_{6}\left(z_{2}\right)\right. \\
& \left.-\frac{b}{2} \Phi_{3}\left(z_{1}+\xi\right) \Psi_{8}\left(z_{2}\right)-\frac{b}{2} \Phi_{4}\left(z_{1}+\xi\right) \Psi_{9}\left(z_{2}\right)\right\} \Phi_{3}\left(z_{3}\right) \\
& +\frac{b}{2}\left(q I_{\infty}\right)^{3}\left\{\Phi_{1}\left(z_{1}+\xi^{*}\right) \Psi_{4}\left(z_{2}\right)+a \Phi_{2}\left(z_{1}+\xi^{*}\right) \Psi_{7}\left(z_{2}\right)\right. \\
& \left.-\frac{b}{2} \Phi_{3}\left(z_{1}+\xi^{*}\right) \Psi_{9}\left(z_{2}\right)-\frac{b}{2} \Phi_{4}\left(z_{1}+\xi^{*}\right) \Psi_{10}\left(z_{2}\right)\right\} \Phi_{4}\left(z_{3}\right) \tag{29}
\end{align*}
$$

in which the quantities Φ_{i} and Ψ_{i} are given by

$$
\begin{equation*}
\Phi_{i}(z)=\frac{1}{z\left(z+x_{i}\right)\left(1+q I_{\infty} F\right)^{2}} \tag{30a}
\end{equation*}
$$

where $x_{i}=0, \beta_{4}, \xi, \xi^{*}$, (for $i=1-4$ respectively);

$$
\begin{equation*}
\Psi_{i}(z)=\frac{1}{\left(z+x_{i}\right)\left(z+y_{i}\right)\left(1+q I_{\infty} F\right)} \tag{30b}
\end{equation*}
$$

here $x_{i}=0$ and $y_{i}=0, \beta_{4}, \xi, \xi^{*}$ (for $i=1-4$ respectively); $x_{i}=\beta_{4}$ and $y_{i}=\beta_{4}, \xi, \xi^{*}$, (for $i=5-7$ respectively); $x_{i}=\xi$ and $y_{i}=\xi, \xi^{*}$ (for $i=8,9$ respectively); $x_{10}=y_{10}=\xi^{*}$.

The complete expression for the joint probability $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)$ may be obtained from equation (29) by taking the Laplace inverse of the various functions $\phi_{i}(z)$ and $\psi_{i}(z)$.

However, for further discussion, we need to consider only an approximate expression for P, where only $\phi_{1,2}(T)$ and $\psi_{1,2,5}(T)$ are involved. Explicit expressions for these functions are as follows:

$$
\begin{align*}
\phi_{1}(t)=\sum_{j=1}^{4} & \frac{\left[\left(\omega_{j}+\beta_{4}\right)\left(\omega_{j}+\xi\right)\left(\omega_{j}+\xi^{*}\right)\right]^{2}}{\left[\prod_{j=1}^{4}\left(\omega_{j}-\omega_{i}\right)^{2}\right.} \\
& \quad \times \exp \left(\omega_{j} t\right)\left\{t+2\left(\frac{1}{\omega_{j}+\beta_{4}}+\frac{1}{\omega_{j}+\xi}+\frac{1}{\omega_{j}+\xi^{*}}\right)-2 \sum_{i \neq j} \frac{1}{\omega_{j}-\omega_{i}}\right\} \tag{31a}
\end{align*}
$$

$$
\phi_{2}(t)=\sum_{j=1}^{4} \frac{\omega_{j}\left(\omega_{j}+\beta_{4}\right)\left(\omega_{j}+\xi\right)^{2}\left(\omega_{j}+\xi^{*}\right)^{2}}{\prod_{j=1}^{4}\left(\omega_{j}-\omega_{i}\right)^{2}}
$$

$$
\begin{equation*}
\times \exp \left(\omega_{j} t\right)\left\{t+\left(\frac{1}{\omega_{j}+\beta_{4}}+\frac{1}{\omega_{j}}+\frac{2}{\omega_{j}+\xi}+\frac{2}{\omega_{j}+\xi^{*}}\right)-2 \sum_{i \neq j} \frac{1}{\omega_{j}-\omega_{i}}\right\} \tag{31b}
\end{equation*}
$$

$\Psi_{1}(t)=L^{-1}\left[\Psi_{1}(z)\right]=\frac{1}{q I_{\infty}}+\sum_{i=1}^{4} \frac{\left(\omega_{i}+\beta_{4}\right)\left(\omega_{i}+\xi\right)\left(\omega_{i}+\xi^{*}\right) \eta_{i}(t)}{\omega_{i}}$
$\Psi_{2}(t)=L^{-1}\left[\Psi_{2}(z)\right]=\sum_{i=1}^{4}\left(\omega_{1}+\xi\right)\left(\omega_{i}+\xi^{*}\right) \eta_{i}(t)$
$\Psi_{5}(t)=L^{-1}\left[\Psi_{5}(z)\right]=\sum_{i=1}^{4} \frac{\omega_{i}\left(\omega_{i}+\xi\right)\left(\omega_{i}+\xi^{*}\right) \eta_{i}(t)}{\omega_{i}+\beta_{4}}-\frac{\beta_{4}\left(\beta_{4}-\xi\right)\left(\beta_{4}-\xi^{*}\right)}{\prod_{j=1}^{4}\left(\omega_{j}+\beta_{4}\right)} \exp \left(-\beta_{4} t\right)$

Figure 2. The joint probability $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right) \times 10^{-1}$ as a function of interval $T_{1}=T_{3}=$ T (in units of γ^{-1}) with $G_{1}=10, G_{2}=0.0, \gamma_{1}=1.0, \gamma_{2}=10^{-6} \gamma_{1}, \nu_{1}=10^{-6} \gamma_{1}, \nu_{2}=0.0$ and the quantum efficiency parameter $q=1$. Curves $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ correspond to the values of $\gamma_{1} T_{2}=0.01,0.1,1.0,10.0$, respectively. The oscillatory character of P for very short times is not shown here.
where

$$
\begin{equation*}
\eta_{i}(t)=\frac{\mathrm{e}^{\mathrm{i} \omega_{l} t}}{\prod_{i \# j}\left(\omega_{l}-\omega_{j}\right)} \tag{33}
\end{equation*}
$$

3.2. Approximate expression for $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)$

Basically, in quantum jump problems we are interested in slow time scales. On this scale the rapidly oscillating part involving $\exp (-\xi T)$ and $\exp \left(-\xi^{*} T\right)$ are neglected. The expression for $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)$ now takes the simplified form

$$
\begin{align*}
P\left(1, T_{1} ; 0, T_{2} ;\right. & \left.1, T_{3}\right)=\left(q I_{\infty}\right)^{2}\left\{\Phi_{1}\left(T_{1}\right) \Phi_{1}\left(T_{3}\right)+a \Phi_{2}\left(T_{1}\right) \Phi_{2}\left(T_{3}\right) \mathrm{e}^{-\beta_{4} T_{2}}\right\} \\
& -\left(q I_{\infty}\right)^{3}\left\{\Phi_{1}\left(T_{1}\right) \Psi_{1}\left(T_{2}\right)+a \Phi_{2}\left(T_{1}\right) \Psi_{2}\left(T_{2}\right)\right\} \Phi_{1}\left(T_{3}\right) \\
& -a\left(q I_{\infty}\right)^{3}\left\{\Phi_{1}\left(T_{1}\right) \Psi_{2}\left(T_{2}\right)+a \Phi_{2}\left(T_{1}\right) \Psi_{5}\left(T_{2}\right)\right\} \Phi_{2}\left(T_{3}\right) \mathrm{e}^{-\beta_{4} T_{1}} \\
= & \left(q I_{\infty}\right)^{2}\left[1-q I_{\infty} \Psi_{1}\left(T_{2}\right)\right] \Phi_{1}\left(T_{1}\right) \Phi_{1}\left(T_{3}\right) \\
& +a\left(q I_{\infty}\right)^{2}\left\{\mathrm{e}^{-\beta_{4} T_{2}}-a q I_{\infty} \mathrm{e}^{-\beta_{4} T_{1}} \Psi_{5}\left(T_{2}\right)\right\} \Phi_{2}\left(T_{1}\right) \Phi_{2}\left(T_{3}\right) \\
& -a\left(q I_{\infty}\right)^{3}\left\{\Phi_{2}\left(T_{1}\right) \Phi_{1}\left(T_{3}\right)+\Phi_{2}\left(T_{3}\right) \Phi_{1}\left(T_{1}\right) \mathrm{e}^{-\beta_{4} T_{1}}\right\} \Psi_{2}\left(T_{2}\right) . \tag{34}
\end{align*}
$$

The approximate roots ω_{1} and ω_{3} (cf equation (27)) need to be considered now. For the special case when $G_{2}=0$, these roots are

$$
\begin{equation*}
\omega_{1} \simeq-2 \beta_{4} I_{\infty} \quad \omega_{3} \simeq-q / 2 \tag{35}
\end{equation*}
$$

$$
P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)
$$

Figure 3. The joint probability $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right) \times 10^{-2}$ as a function of interval $T_{1}=T_{3}=$ T (in units of γ^{-1}) with $G_{2}=0.05$. The other parameters are the same as in figure 2.

In this case, we have the following expressions for the Φ 's and Ψ 's:
$\phi_{1}(t)=\frac{4 \beta_{4}}{q^{2}}\left(1-2 I_{\infty}\right)\left[\beta_{4}\left(1-2 I_{\infty}\right) t-2\right] \mathrm{e}^{-2 \beta_{4} I_{\infty} t}+\left[t+\frac{8 \beta_{4}}{q^{2}}\left(1-2 I_{\infty}\right)\right] \mathrm{e}^{-q t / 2}$
$\phi_{2}(t)=\left(-\frac{4 \beta_{4}}{q^{2}}\right)\left[\beta_{4} I_{\infty}\left(1-2 I_{\infty}\right) t-\left(1-4 I_{\infty}\right)\right] \mathrm{e}^{-2 \beta_{4} I_{\infty} t}+\left[t+\frac{4}{q^{2}}\left(1-4 I_{\infty}\right) \beta_{4}\right] \mathrm{e}^{-q t / 2}$
$\Psi_{1}(t)=\frac{1}{q I_{\infty}}\left[1-\mathrm{e}^{-2 \beta_{4} I_{\infty} t}\right]+\frac{2}{q}\left[\mathrm{e}^{-2 \beta_{4} I_{\infty} t}-\mathrm{e}^{-q t / 2}\right]$
$\Psi_{2}(t)=\frac{2}{q}\left[e^{-2 \beta_{4} L_{\infty} t}-\mathrm{e}^{-q t / 2}\right]$
$\Psi_{S}(t)=\frac{2}{q\left(1-2 I_{\infty}\right)}\left[\mathrm{e}^{-\beta_{4} t}-2 I_{\infty} \mathrm{e}^{-2 \beta_{4} I_{x} t}\right]-\frac{2}{q} \mathrm{e}^{-q t / 2}$.
Note that as $t \rightarrow 0, \phi_{1,2}(t)$ and $\Psi_{1,2,5}(t) \rightarrow 0$. We next examine the behaviour of $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)$ for various situations.
(i) First, we keep T_{1} and T_{3} fixed and examine P as T_{2} is varied. For $T_{2} \rightarrow 0, \Psi_{1}\left(T_{2}\right)$, $\Psi_{2}\left(T_{2}\right)$ and $\Psi_{5}\left(T_{2}\right) \rightarrow 0$, and we have

$$
\begin{equation*}
P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right) \rightarrow\left(q I_{\infty}\right)^{2}\left\{\Phi_{1}\left(T_{1}\right) \Phi_{1}\left(T_{3}\right)+a \Phi_{2}\left(T_{1}\right) \Phi_{2}\left(T_{3}\right)\right\} \tag{37}
\end{equation*}
$$

Hence the initial value of P as a function of T_{2} depends on T_{1} and T_{3} as expected. For small, as well as very large values of T_{1} and T_{3}, P is small. However, P attains a maximum for some intermediate values of T_{1} and T_{3}.

Figure 4. The joint probability $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right) \times 10^{-1}$ as a function of interval T_{2} (in units of γ^{-1}) with $G_{1}=10, G_{2}=0.0, \gamma_{1}=1.0, \gamma_{2}=10^{-6} \gamma_{1}, \nu_{1}=10^{-6} \gamma_{1}$ and $\nu_{2}=0.0$. Here we have taken $T_{1}=T_{3}=T$ and the curves $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ correspond to the values of $\gamma_{1} T=0.5,1.0$, $1.5,2.0$, respectively. The inset shows $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right) \times 10^{-6}$ as a function of T_{2} from $\log _{10}\left(\gamma_{1} T_{2}\right)=1.45$ onwards.
(ii) For small values of $T_{2}, \mathrm{e}^{-\beta_{4} T_{2}}$ and $\mathrm{e}^{-2 \beta_{4} I_{\infty} T_{2}} \cong 1$ and hence,

$$
\begin{equation*}
\Psi_{1,2, \mathrm{~S}}(t) \rightarrow \frac{2}{q}\left[1-\mathrm{e}^{-\mathrm{q} t / 2}\right] . \tag{38}
\end{equation*}
$$

Therefore

$$
\begin{align*}
P\left(1, T_{1} ; 0, T_{2} ;\right. & \left., T_{3}\right) \cong\left(q I_{\infty}\right)^{2}\left\{\left[\left(1-2 I_{\infty}\right)+2 I_{\infty} \mathrm{e}^{-q T_{2} / 2}\right] \Phi_{1}\left(T_{1}\right) \Phi_{1}\left(T_{3}\right)\right. \\
& +a\left[1-2 a I_{\infty} \mathrm{e}^{-\beta_{4} T_{1}}\left(1-\mathrm{e}^{-q T_{2} / 2}\right)\right] \Phi_{2}\left(T_{1}\right) \Phi_{2}\left(T_{3}\right) \\
& \left.-2 a I_{\infty}\left[\Phi_{2}\left(T_{1}\right) \Phi_{1}\left(T_{3}\right)+\Phi_{1}\left(T_{1}\right) \Phi_{2}\left(T_{3}\right) \mathrm{e}^{-\beta_{4} T_{1}}\right]\left(1-\mathrm{e}^{-q T_{2} / 2}\right)\right\} \tag{39}
\end{align*}
$$

Now as T_{2} is increased, P decreases steadily from its initial value (37), the decreased rate being governed by the decay rate $q / 2$. Eventually the factor $\mathrm{e}^{-q T_{2} / 2}$ tends to zero and P attains a plateau with the value given by

$$
\begin{align*}
P_{\text {at plateau }}= & \left(q I_{\infty}\right)^{2}\left\{\left(1-2 I_{\infty}\right) \Phi_{1}\left(T_{1}\right) \Phi_{1}\left(T_{3}\right)+a\left(1-2 a I_{\infty} \mathrm{e}^{-\beta_{4} T_{1}}\right) \Phi_{2}\left(T_{1}\right) \Phi_{2}\left(T_{3}\right)\right. \\
& \left.-2 a I_{\infty}\left[\Phi_{2}\left(T_{1}\right) \Phi_{1}\left(T_{3}\right)+\Phi_{1}\left(T_{1}\right) \Phi_{2}\left(T_{3}\right) \mathrm{e}^{-\beta_{4} T_{1}}\right]\right\} \tag{40}
\end{align*}
$$

(iii) For larger values of T_{2} where $\mathrm{e}^{-q T_{2} / 2} \rightarrow 0$ but $\mathrm{e}^{-\beta_{4} T_{2}}$ and $\mathrm{e}^{-2 \beta_{4} I_{\infty} T_{2}}$ are significant we have

$$
\begin{equation*}
\Psi_{1}\left(T_{2}\right)=\frac{1}{q I_{\infty}}-\frac{2 a}{q} e^{-2 \beta_{4} l_{\infty} T_{2}} \tag{41}
\end{equation*}
$$

where $a=\left(1-2 I_{\infty}\right) / 2 I_{\infty}$

$$
\begin{equation*}
\Psi_{2}\left(T_{2}\right)=\frac{2}{q} \mathrm{e}^{-2 \beta_{4} I_{c o} T_{2}} \tag{42}
\end{equation*}
$$

Figure 5. The joint probability $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right) \times 10^{-2}$ as a function of interval T_{2} (in units of γ^{-1}) with $G_{2}=0.05$. The other parameters are the same as in figure 4. The inset shows $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right) \times 10^{-6}$ as a function of T_{2} from $\log _{10}\left(\gamma_{1} T_{2}\right)=1.45$ onwards.

$$
\begin{equation*}
\Psi_{5}\left(T_{2}\right)=\frac{1}{q a I_{\infty}}\left[\mathrm{e}^{-\beta_{4} T_{2}}-2 I_{\infty} \mathrm{e}^{-2 \beta_{4} I_{\infty} T_{2}}\right] \tag{43}
\end{equation*}
$$

This leads to

$$
\begin{align*}
& P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)=\left(q I_{\infty}\right)^{2}\left(\left(1-2 I_{\infty}\right) \mathrm{e}^{-2 \beta_{4} I_{\infty} T_{2}} \Phi_{1}\left(T_{1}\right) \Phi_{1}\left(T_{3}\right)\right. \\
&+a\left[\mathrm{e}^{-\beta_{4} T_{2}}-\left(\mathrm{e}^{-\beta_{4} T_{2}}-2 I_{\infty} \mathrm{e}^{-2 \beta_{4} I_{\infty} T_{2}}\right) \mathrm{e}^{-\beta_{4} T_{3}}\right] \Phi_{2}\left(T_{1}\right) \Phi_{2}\left(T_{3}\right) \\
&\left.-2 a I_{\infty}\left[\Phi_{2}\left(T_{1}\right) \Phi_{1}\left(T_{3}\right)+\Phi_{1}\left(T_{1}\right) \Phi_{2}\left(T_{3}\right) \mathrm{e}^{-\beta_{4} T_{1}}\right] \mathrm{e}^{-2 \beta_{4} I_{\infty} T_{2}}\right) . \tag{44}
\end{align*}
$$

It is clear from equation (44) that the probability P eventually decays to zero for very long times, characterized by $2 l_{\infty} \beta_{4} T_{2} \gg 1$.

Note, however, that in the above analysis, we have set $G_{2}=0$. The formula will still hold if we let

$$
\begin{equation*}
I_{\infty} \rightarrow I_{\infty}^{\prime}=I_{\infty} \frac{\left|G_{0}\right|^{2}}{\left|G_{1}\right|^{2}} \quad \text { and } \quad q \rightarrow q^{\prime}=q \frac{\left|G_{1}\right|^{2}}{\left|G_{0}\right|^{2}} \tag{45}
\end{equation*}
$$

in the above approximate expressions. These changes will give the behaviour of P for different values of G_{2}.

4. Discussion of results

We have evaluated numerically the complete expression for the joint probability $P\left(1, T_{1} ; 0, T_{2} ; 1, T_{3}\right)$ for the parameters of interest. The numerical results are consistent with the qualitative features discussed in section 3 with the help of the approximate analytical
expression (34). In figure 2 we show the behaviour of the joint probability with respect to time $T_{1}=T_{3}=T$ for various values of time T_{2} when no field is applied to drive the weak transition $|1\rangle \rightarrow|2\rangle\left(G_{2}=0\right)$. As expected on physical grounds, the probability shows a sharp maximum when $\gamma_{1} T \simeq 1$. However, as the time interval (T_{2}) between successive emissions is increased, the height of the maximum decreases. This is because the successive photons arrive within a time interval that is of the order of γ_{1}^{-1}. Also, as shown in figure 3, when a field is applied to drive the weak transition $|1\rangle \rightarrow|2\rangle$ the heights of the maxima decrease, as compared to the previous case ($G_{2}=0$), due to the increased probability of shelving of the electron in the level $|2\rangle$. Figure 4 displays the behaviour of joint probability P with respect to time T_{2} for some fixed values of $T_{1}=T_{3}=T\left(\gamma_{1} T \geqslant 1\right)$ with $G_{2}=0$. For small values of T_{2}, the probability P is nearly constant and thereafter it rapidly decreases. This decrease is essentially governed by the time constant $q / 2$. The inset in figure 4 , however, shows the existence of a plateau when T_{2} approaches the second time scale $\left(\sim \gamma^{-1}\right)$. During the plateau region the probability that no photon is emitted remains constant due to the shelving effect. Eventually, for very large values of T_{2}, the quantity P decreases to zero since an interval of that length contains both dark and bright periods of the quantum telegraph. Figure 5 shows the behaviour of the joint probability as a function of time T_{2} when a small field is applied to drive the transition $|1\rangle \rightarrow|2\rangle$. The behaviour is similar to that shown in figure 4 except that the values of P are lower because of the enhanced probability for the electron to be shelved in level $|2\rangle$.

Appendix. Evaluation of the third-order generating function $Q\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

In this appendix, we outline the steps leading to the evaluation of $\tilde{Q}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ as defined in equation (7) which is subsequently used in the main text to evaluate \tilde{P}.

We start with the expression

$$
\begin{align*}
Q\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}\left\langle T_{\mathrm{N}}\left(\lambda_{1} W_{1}+\lambda_{2} W_{2}+\lambda_{3} W_{3}\right)^{n}\right\rangle \\
& =1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \sum_{k=0}^{n}{ }^{n} C_{k} \lambda_{1}^{k}\left\langle T_{\mathrm{N}} W_{1}^{k}\left(\lambda_{2} W_{2}+\lambda_{3} W_{3}\right)^{n-k}\right\rangle \\
& =1+\sum_{n=1}^{\infty} \sum_{k=0}^{n} \sum_{m=0}^{n-k} \frac{(-1)^{n}}{n!}{ }^{n} C_{k}{ }^{n-k} C_{m} \lambda_{1}^{k} \lambda_{2}^{m} \lambda_{3}^{n-k-m}\left\langle T_{\mathrm{N}} W_{1}^{k} W_{2}^{m} W_{3}^{n-k-m}\right\rangle \tag{A1}
\end{align*}
$$

Typical terms which occur in the above expression are $\left\langle T_{\mathrm{N}} W_{i}^{k}\right\rangle,\left\langle T_{\mathrm{N}} W_{i}^{k} W_{j}^{n-k}\right\rangle(i, j=1-3$, $i<j)$ and $\left\langle T_{N} W_{1}^{k} W_{2}^{m} W_{3}^{n-k-m}\right\rangle$.

We evaluate the contribution of each of these terms towards \tilde{Q}. First consider a typical term

$$
\begin{align*}
\left\langle T_{\mathrm{N}} W_{1}^{n}\right\rangle & =q^{n} \int_{t}^{t+T_{1}} \int_{t}^{t+T_{1}} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{n}\left\langle T_{\mathrm{N}} I\left(t_{1}\right) I\left(t_{2}\right) \cdots I\left(t_{n}\right)\right\rangle \\
& =q^{n} n!\int_{0}^{T_{1}} \mathrm{~d} t_{n} \cdots \int_{0}^{t_{2}} \mathrm{~d} t_{1}\left\langle T_{\mathrm{N}} I\left(t_{1}\right) I\left(t_{2}\right) \cdots I\left(t_{n}\right)\right\rangle \\
& =q^{n}\langle I\rangle^{n} \int_{0}^{T_{1}} \mathrm{~d} t_{n} \cdots \int_{0}^{t_{k}} \mathrm{~d} t_{1} \prod_{s=2}^{n} f\left(t_{s}-t_{s-1}\right) \tag{A2}
\end{align*}
$$

where $f(t)$ is the normalized intensity correlation of second order defined by

$$
\begin{equation*}
f(t)=\left\langle T_{\mathrm{N}} I\left(t_{0}\right) I\left(t_{0}+t\right)\right\rangle /\left[\left\langle I\left(t_{0}\right)\right\rangle\left\langle I\left(t_{0}+t\right)\right\rangle\right] . \tag{A3}
\end{equation*}
$$

In the step (A2) we have used the so-called factorization property valid for a single atom. This property allows us to express higher-order correlations as a product of correlations of second order, e.g.

$$
\begin{equation*}
\left\langle T_{\mathrm{N}} I\left(t_{1}\right) I\left(t_{2}\right)\right\rangle=\langle I\rangle^{2} f\left(t_{2}-t_{1}\right) \tag{A4}
\end{equation*}
$$

Therefore, the knowledge of this normalized intensity correlation $f(t)$ allows us to evaluate every other correlation.

We thus have

$$
\begin{equation*}
\left\langle T_{\mathrm{N}} W_{1}^{n}\right\rangle=\left\langle q I_{\infty}\right\rangle^{n} n!\int_{0}^{T_{1}} \mathrm{~d} t_{n} \cdots \int_{0}^{t_{k}} \mathrm{~d} t_{1} \prod_{s=2}^{n} f\left(t_{s}-t_{s-1}\right) \tag{A5}
\end{equation*}
$$

where $\langle I\rangle=I_{\infty}$.
We define a triple Laplace transform

$$
\begin{equation*}
\left\langle\widehat{T_{\mathrm{N}} W_{1}^{n}}\right\rangle=\int_{0}^{\infty} \mathrm{d} T_{3} \mathrm{e}^{-z_{3} T_{3}} \int_{0}^{\infty} \mathrm{d} T_{2} \mathrm{e}^{-z^{2} T_{2}} \int_{0}^{\infty} \mathrm{d} T_{1}\left\langle T_{\mathrm{N}} W_{1}^{n}\right\rangle \mathrm{e}^{-z_{1} T_{1}} \tag{A6}
\end{equation*}
$$

and using the convolution theorem we get

$$
\begin{align*}
& \left\langle\widehat{T_{\mathrm{N}} W_{i}^{n}}\right\rangle=\left(q I_{\infty}\right)^{n} n!\frac{\left[F\left(Z_{i}\right)\right]^{n-1}}{Z_{1} Z_{2} Z_{3}} \quad i=1-3 \tag{A7}\\
& \langle\tilde{\mathrm{l}}\rangle=\int_{0}^{\infty} \mathrm{d} T_{3} \mathrm{e}^{-z_{3} T_{3}} \int_{0}^{\infty} \mathrm{d} T_{2} \mathrm{e}^{-z_{2} T_{2}} \int_{0}^{\infty} \mathrm{d} T_{1} \mathrm{e}^{-z_{1} T_{1}}=\frac{1}{Z_{1} Z_{2} Z_{3}} . \tag{A8}
\end{align*}
$$

Here $F(z)$ is the Laplace transform of the normalized intensity correlation function $f(t)$ defined earlier.

The contribution of these terms to \tilde{Q} is

$$
\begin{equation*}
A=\frac{1}{Z_{1} Z_{2} Z_{3}}-\frac{q I_{\infty}}{Z_{1} Z_{2} Z_{3}} \sum_{i=1}^{3} \frac{\lambda_{i}}{Z_{i}\left(1+\lambda_{i} q I_{\infty} F_{i}\right)} \tag{A9}
\end{equation*}
$$

where $F_{i}=F\left(Z_{i}\right)$.
Next we consider terms of the type

$$
\begin{align*}
\left\langle T_{\mathrm{N}}: W_{1}^{k} W_{2}^{n-k}\right\rangle & =k!(n-k)!\left\langle q I_{\infty}\right\rangle^{n} \int_{0}^{T_{2}} \mathrm{~d} t_{n} \cdots \int_{0}^{t_{k+2}} \mathrm{~d} t_{k+1} \int_{0}^{T_{1}} \mathrm{~d} t_{k} \\
\cdots & \int_{0}^{t_{2}} \mathrm{~d} t_{1}\left(\prod_{s=k+2}^{n} f\left(t_{s}-t_{s-1}\right)\right) f\left(t_{k+1}+T_{1}-t_{k}\right)\left(\prod_{r=1}^{k} f\left(t_{r}-t_{r-1}\right)\right) \tag{A10}
\end{align*}
$$

and evaluate the triple Laplace transform

$$
\begin{align*}
\int_{0}^{\infty} \mathrm{d} T_{3} \mathrm{e}^{-z_{3} T_{3}} & \int_{0}^{\infty} \mathrm{d} T_{2} \mathrm{e}^{-z_{2} T_{2}} \int_{0}^{\infty} \mathrm{d} T_{1} \mathrm{e}^{-z_{1} T_{1}} \int_{0}^{T_{2}} \mathrm{~d} t_{n} \cdots \int_{0}^{t_{k+2}} \mathrm{~d} t_{k+1} \int_{0}^{T_{1}} \mathrm{~d} t_{k} \\
& \cdots \int_{0}^{t_{2}} \mathrm{~d} t_{1}\left(\prod_{s=k+2}^{n} f\left(t_{s}-t_{s-1}\right)\right) f\left(t_{k+1}+T_{1}-t_{k}\right)\left(\prod_{r=1}^{k} f\left(t_{r}-t_{r-1}\right)\right) \\
= & \frac{1}{Z_{3}} \int_{0}^{\infty} \mathrm{d} T_{2} \mathrm{e}^{-z_{2} T_{2}} \int_{0}^{\infty} \mathrm{d} T_{1} \mathrm{e}^{-z_{1} T_{1}} \int_{0}^{T_{2}} \mathrm{~d} t \cdots \int_{0}^{t_{k+2}} \mathrm{~d} t_{k+1} \int_{0}^{T_{1}} \mathrm{~d} t_{k} \\
& \cdots \int_{0}^{t_{2}} \mathrm{~d} t_{1}\left(\prod_{s=k+2}^{n} f\left(t_{s}-t_{s-1}\right)\right) f\left(t_{k+1}+T_{1}-t_{k}\right)\left(\prod_{r=2}^{k} f\left(t_{r}-t_{r-1}\right)\right) \\
= & \frac{F^{n-k-1}\left(Z_{2}\right)}{Z_{2} Z_{3}} \int_{0}^{\infty} \mathrm{d} t_{k+1} \mathrm{e}^{-z_{2} t_{k+1}} \int_{0}^{\infty} \mathrm{d} T_{1} \mathrm{e}^{-z_{1} T_{1}} \int_{0}^{T_{1}} \mathrm{~d} t_{k} f\left(t_{k+1}+T_{1}-t_{k}\right) \\
& \times \int_{0}^{t_{k}} \mathrm{~d} t_{k-1} \int_{0}^{t_{2}} \mathrm{~d} t_{1}\left(\prod_{r=2}^{k} f\left(t_{r}-t_{r-1}\right)\right) \tag{A11}
\end{align*}
$$

In order to evaluate this we write

$$
\begin{align*}
\int_{0}^{\infty} \mathrm{d} T_{1} \mathrm{e}^{-z_{1} T_{1}} & \int_{0}^{T_{1}} \mathrm{~d} t_{k} f\left(t_{k+1}+T_{1}-t_{k}\right)=\int_{0}^{\infty} \mathrm{d} t_{k} \int_{t_{k}}^{\infty} \mathrm{d} T_{1} \mathrm{e}^{-z_{1} T_{1}} f\left(t_{k+1}+T_{1}-t_{k}\right) \\
& =\int_{0}^{\infty} \mathrm{d} t_{k} \mathrm{e}^{-z_{1} t_{k}} \int_{0}^{\infty} \mathrm{d} T_{1} \mathrm{e}^{-z_{1} T_{1}} f\left(t_{k+1}+T_{1}\right) \\
& =\int_{0}^{\infty} \mathrm{d} T_{1} \mathrm{e}^{-z_{1} T_{1}} f\left(t_{k+1}+T_{1}\right) \int_{0}^{\infty} \mathrm{d} t_{k} \mathrm{e}^{-z_{1} t_{k}} \tag{A12}
\end{align*}
$$

From here on, the convolution theorem is applicable and we may write

$$
\begin{align*}
\left\langle T_{\mathrm{N}}: \widetilde{W_{1}^{k}} W_{2}^{n-k}\right\rangle & =k!(n-k)!\left(q I_{\infty}\right)^{n} \frac{\left[F\left(Z_{2}\right)\right]^{n-k-1}\left[F\left(Z_{1}\right)\right]^{k-1}}{Z_{1} Z_{2} Z_{3}} \\
& \times \int_{0}^{\infty} \mathrm{d} t_{k+1} \mathrm{e}^{-z_{2} t_{k+1}} \int_{0}^{\infty} \mathrm{d} T_{1} \mathrm{e}^{-z_{1} T_{1}} f\left(t_{k+1}+T_{1}\right) \tag{A13}
\end{align*}
$$

Consider now the term

$$
\begin{align*}
\left\langle T_{\mathrm{N}}: W_{2}^{k} W_{3}^{n-k}\right\rangle & =k!(n-k)!\left(q I_{\infty}\right)^{n} \int_{0}^{T_{3}} \mathrm{~d} t_{n} \cdots \int_{0}^{t_{k+2}} \mathrm{~d} t_{k+1} \int_{0}^{T_{2}} \mathrm{~d} t_{k} \\
\cdots & \int_{0}^{t_{2}} \mathrm{~d} t_{1}\left(\prod_{s=k+2}^{n} f\left(t_{s}-t_{s-1}\right)\right) f\left(t_{k+1}+T_{2}-t_{k}\right)\left(\prod_{r=1}^{k} f\left(t_{r}-t_{r-1}\right)\right) \tag{A14}
\end{align*}
$$

Finally, we consider

$$
\begin{align*}
\left\langle T_{\mathrm{N}}: W_{1}^{k} W_{3}^{n-k}\right\rangle & =\int_{t}^{t+T_{2}} \mathrm{~d} t_{1} \cdots \int_{t}^{t+T_{1}} \mathrm{~d} t_{k} \int_{t+T_{1}+T_{2}}^{t+T_{1}+T_{2}+T_{3}} \mathrm{~d} t_{k+1} \\
& \cdots \int_{t+T_{1}+T_{2}}^{t+T_{1}+T_{2}+T_{3}} \mathrm{~d} t_{n}\left(T_{\mathrm{N}} I\left(t_{1}\right) \cdots I\left(t_{k}\right) I\left(t_{k+1}\right) \cdots I\left(t_{n}\right)\right) . \tag{A15}
\end{align*}
$$

Using the factorization theorem, we may write this as

$$
\begin{align*}
\left\langle T_{\mathrm{N}}: W_{1}^{k} W_{3}^{n-k}\right\rangle & =k!(n-k)!\left\langle q I_{\infty}\right\rangle^{n} \int_{0}^{T_{3}} \mathrm{~d} t_{n} \cdots \int_{0}^{t_{k+2}} \mathrm{~d} t_{k+1} \int_{0}^{t_{k+1}} \mathrm{~d} t_{k} \\
\cdots & \int_{0}^{T_{1}} \mathrm{~d} t_{1}\left(\prod_{s=k+2}^{n} f\left(t_{s}-t_{s-1}\right)\right) f\left(t_{k+1}+T_{1}+T_{2}-t_{k}\right)\left(\prod_{r=1}^{k} f\left(t_{r}-t_{r-1}\right)\right) . \tag{A16}
\end{align*}
$$

If we take the triple Laplace transform and use the convolution theorem as before, we obtain
$\left\langle T_{\mathrm{N}}: \widetilde{W_{1}^{k}} W_{2}^{n-k}\right\rangle=(n-k)!k!\left(q I_{\infty}\right)^{n}\left[F\left(Z_{1}\right)\right]^{k-1}\left[F\left(Z_{2}\right)\right]^{n-k-1} \kappa_{1}\left(Z_{1} Z_{2} Z_{3}\right)$
$\left\langle T_{\mathrm{N}}: \widetilde{W_{2}^{k}} W_{3}^{n-k}\right\}=(n-k)!k!\left(q I_{\infty}\right)^{n}\left[F\left(Z_{2}\right)\right]^{k-1}\left[F\left(Z_{3}\right)\right]^{n-k-1} \kappa_{2}\left(Z_{1} Z_{2} Z_{3}\right)$
$\left\langle T_{N}: \widetilde{W_{1}^{k}} W_{3}^{n-k}\right\rangle=(n-k)!k!\left(q I_{\infty}\right)^{n}\left[F\left(Z_{1}\right)\right]^{k-1}\left[F\left(Z_{3}\right)\right]^{n-k-1} \kappa_{3}\left(Z_{1} Z_{2} Z_{3}\right)$
where

$$
\begin{align*}
& \kappa_{1}\left(Z_{1} Z_{2} Z_{3}\right)=\frac{1}{Z_{1} Z_{2} Z_{3}} \int_{0}^{\infty} \mathrm{d} t_{k+1} \mathrm{e}^{-z_{2} t_{k+1}} \int_{0}^{\infty} \mathrm{d} T_{1} \mathrm{e}^{-z_{1} T_{1}} f\left(t_{k+1}+T_{1}\right) \tag{A18a}\\
& \kappa_{2}\left(Z_{1} Z_{2} Z_{3}\right)=\frac{1}{Z_{1} Z_{2} Z_{3}} \int_{0}^{\infty} \mathrm{d} t_{k+1} \mathrm{e}^{-z_{3} t_{k+1}} \int_{0}^{\infty} \mathrm{d} T_{2} \mathrm{e}^{-z_{2} T_{2}} f\left(t_{k+1}+T_{2}\right) \tag{A18b}\\
& \kappa_{3}\left(Z_{1} Z_{2} Z_{3}\right)=\frac{1}{Z_{1} Z_{3}} \int_{0}^{\infty} \mathrm{d} T_{2} \mathrm{e}^{-z_{2} T_{2}} \int_{0}^{\infty} \mathrm{d} T_{1} \mathrm{e}^{-z_{1} T_{1}} \int_{0}^{\infty} \mathrm{d} t_{k+1} \mathrm{e}^{-z_{3} t_{k+1}} f\left(t_{k+1}+T_{1}+T_{2}\right)
\end{align*}
$$

On using the standard form of $f(t)$ given by

$$
\begin{equation*}
f(t)=1+\sum_{p} a_{p} \mathrm{e}^{-v_{p} t} \tag{A19}
\end{equation*}
$$

where v_{p} are complex quantities, we arrive at

$$
\begin{align*}
& \kappa_{1}=\frac{1}{Z_{1}^{2} Z_{2}^{2} Z_{3}}+\sum_{p} \frac{a_{p}}{Z_{1}\left(Z_{1}+\nu_{p}\right) Z_{2}\left(Z_{2}+\nu_{p}\right) Z_{3}} \tag{A20a}\\
& \kappa_{2}=\frac{1}{Z_{1} Z_{2}^{2} Z_{3}^{2}}+\sum_{p} \frac{a_{p}}{Z_{1}\left(Z_{2}+\nu_{p}\right) Z_{2}\left(Z_{3}+\nu_{p}\right) Z_{3}} \tag{A20b}\\
& \kappa_{3}=\frac{1}{Z_{1}^{2} Z_{2} Z_{3}^{2}}+\sum_{p} \frac{a_{p}}{Z_{1}\left(Z_{1}+\nu_{p}\right) Z_{2}\left(Z_{3}+\nu_{p}\right) Z_{3}} . \tag{A20c}
\end{align*}
$$

Contribution from these terms to $\tilde{Q}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is

$$
\begin{gather*}
\frac{\lambda_{1} \lambda_{2}\left(q I_{\infty}\right)^{2} \kappa_{1}\left(Z_{1}, Z_{2}, Z_{3}\right)}{\left(1+q I_{\infty} \lambda_{1} F_{1}\right)\left(1+q I_{\infty} \lambda_{2} F_{2}\right)}+\frac{\lambda_{2} \lambda_{3}\left(q I_{\infty}\right)^{2} \kappa_{2}\left(Z_{1}, Z_{2}, Z_{3}\right)}{\left(1+q I_{\infty} \lambda_{2} F_{2}\right)\left(1+q I_{\infty} \lambda_{3} F_{3}\right)} \\
+\frac{\lambda_{3} \lambda_{1}\left(q I_{\infty}\right)^{2} \kappa_{3}\left(Z_{1}, Z_{2}, Z_{3}\right)}{\left(1+q I_{\infty} \lambda_{1} F_{1}\right)\left(1+q I_{\infty} \lambda_{3} F_{3}\right)} \tag{A21}
\end{gather*}
$$

Finally, we consider the following term in equation (7), i.e. $\left\langle T_{\mathrm{N}}: W_{1}^{k} W_{2}^{m} W_{3}^{n-k-m}\right\rangle$. The procedure for reduction of this term is as before. We take the triple Laplace transform. The time ordering and factorization property yields

$$
\begin{align*}
&\left\langle T_{\mathrm{N}}: W_{1}^{k} W_{2}^{m} W_{3}^{n-k-m}\right\rangle=k!m!(n-k-m)!\left(q I_{\infty}\right)^{n} \\
& \times \int_{0}^{T_{3}} \mathrm{~d} t_{n} \cdots \int_{0}^{t_{k+m+2}} \mathrm{~d} t_{k+m+1} \int_{0}^{T_{2}} \mathrm{~d} t_{k+m+1} \cdots \int_{0}^{t_{k+2}} \mathrm{~d} t_{k+1} \int_{0}^{T_{1}} \mathrm{~d} t_{k} \\
& \ldots \int_{0}^{t_{2}} \mathrm{~d} t_{1}\left(\prod_{h=k+m+2}^{n} f\left(t_{h}-t_{h-1}\right)\right) f\left(t_{k+m+1}+T_{1}+T_{2}-t_{k+m}\right) \\
& \times\left(\prod_{i=k+2}^{k+m} f\left(t_{i}-t_{i-1}\right)\right) f\left(t_{k+1}+T_{1}+T_{2}-t_{k}\right)\left(\prod_{j=1}^{k} f\left(t_{j}-t_{j-1}\right)\right) \tag{A22}\\
&\left\langle T_{\mathrm{N}} W_{1}^{k} \widetilde{W_{2}^{m}} W_{3}^{n-k-m}\right\rangle=\frac{\left(q I_{\infty}\right)^{n}}{Z_{3}}\left[F\left(Z_{3}\right)\right]^{n-k-m-1}\left[F\left(Z_{2}\right)\right]^{m-1}\left(\frac{n!}{k!m!(n-k-m)!}\right) \\
& \times \int_{0}^{\infty} \mathrm{d} t_{k+m+1} \mathrm{e}^{-z_{3} t_{k+m+1}} \int_{0}^{\infty} \mathrm{d} T_{2} \mathrm{e}^{-z_{2} T_{2}} \int_{0}^{\infty} \mathrm{d} t_{k+1} \mathrm{e}^{-z_{2} t_{k+1}} \\
& \times \int_{0}^{\infty} \mathrm{d} T_{1} \mathrm{e}^{-z_{1} T_{1}} \int_{0}^{\infty} \mathrm{d} t_{k} \cdots \int_{0}^{\infty} \mathrm{d} t_{1} \exp \left(-\sum_{i=1}^{k} Z_{i} t_{i}\right) \\
& \times\left(\prod_{i=1}^{k} f\left(t_{i}\right)\right) f\left(t_{k+m+1}+T_{1}+T_{2}+\sum_{i=1}^{k} t_{i}\right) f\left(t_{k+1}+T_{1}\right) . \tag{A23}
\end{align*}
$$

After simplification the contribution to \tilde{Q} from this term becomes

$$
\begin{gather*}
-\frac{\lambda_{1} \lambda_{2} \lambda_{3}\left(q I_{\infty}\right)^{3} \kappa_{4}}{\left(1+q I_{\infty} \lambda_{1} F_{1}\right)\left(1+q I_{\infty} \lambda_{2} F_{2}\right)\left(1+q I_{\infty} \lambda_{3} F_{3}\right)}-\frac{\lambda_{1} \lambda_{2} \lambda_{3}\left(q I_{\infty}\right)^{3}}{\left(1+q I_{\infty} \lambda_{2} F_{2}\right)\left(1+q I_{\infty} \lambda_{3} F_{3}\right)} \\
\times\left\{\sum_{p} \frac{\kappa_{p}}{\left[1+q I_{\infty} \lambda_{1} F\left(Z_{1}+v_{p}\right)\right]}\right\} \tag{A24}
\end{gather*}
$$

where

$$
\begin{align*}
& \kappa_{4}=\frac{1}{\left(Z_{1} Z_{2} Z_{3}\right)^{2}}+\sum_{p} \frac{a_{p}}{Z_{1}\left(Z_{1}+v_{p}\right) Z_{2}\left(Z_{2}+v_{p}\right) Z_{3}^{2}} \tag{A25a}\\
& \kappa_{p}=\frac{a_{p}}{\left(Z_{1}+v_{p}\right)\left(Z_{2}+v_{p}\right) Z_{3}\left(Z_{3}+v_{p}\right)}\left\{\frac{1}{\left(Z_{1}+v_{p}\right) Z_{2}}+\sum_{r} \frac{a_{p}}{\left(Z_{1}+v_{p}+v_{r}\right)\left(Z_{2}+v_{r}\right)}\right\} . \tag{A25b}
\end{align*}
$$

Finally, adding the contributions term by term we obtain

$$
\begin{align*}
\tilde{Q}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)= & \frac{1}{Z_{1} Z_{2} Z_{3}}-\frac{q I_{\infty}}{Z_{1} Z_{2} Z_{3}} \sum_{i=1}^{3} \frac{\lambda_{i}}{Z_{i}\left(1+\lambda_{i} q I_{\infty} F_{i}\right)} \\
& +\frac{\lambda_{1} \lambda_{2}\left(q I_{\infty}\right)^{2} \kappa_{1}\left(Z_{1}, Z_{2}, Z_{3}\right)}{\left(1+q I_{\infty} \lambda_{1} F_{1}\right)\left(1+q I_{\infty} \lambda_{2} F_{2}\right)}+\frac{\lambda_{2} \lambda_{3}\left(q I_{\infty}\right)^{2} \kappa_{2}\left(Z_{1}, Z_{2}, Z_{3}\right)}{\left(1+q I_{\infty} \lambda_{2} F_{2}\right)\left(1+q I_{\infty} \lambda_{3} F_{3}\right)} \\
& +\frac{\lambda_{3} \lambda_{1}\left(q I_{\infty}\right)^{2} \kappa_{3}\left(Z_{1}, Z_{2}, Z_{3}\right)}{\left(1+q I_{\infty} \lambda_{1} F_{1}\right)\left(1+q I_{\infty} \lambda_{3} F_{3}\right)} \\
& -\frac{\lambda_{1} \lambda_{2} \lambda_{3}\left(q I_{\infty}\right)^{3} \kappa_{4}}{\left(1+q I_{\infty} \lambda_{1} F_{1}\right)\left(1+q I_{\infty} \lambda_{2} F_{2}\right)\left(1+q I_{\infty} \lambda_{3} F_{3}\right)} \\
& -\frac{\lambda_{1} \lambda_{2} \lambda_{3}\left(q I_{\infty}\right)^{3}}{\left(1+q I_{\infty} \lambda_{2} F_{2}\right)\left(1+q I_{\infty} \lambda_{3} F_{3}\right)}\left\{\sum_{p} \frac{\kappa_{p}}{\left[1+q I_{\infty} \lambda_{1} F\left(Z_{1}+v_{p}\right)\right]}\right\} . \tag{A26}
\end{align*}
$$

References

[1] Nagourney W, Sandberg J and Dehmelt H 1986 Phys. Rev. Lett. 562797
[2] Bergquist J C, Hulet R G, Itano W M and Wineland D J 1986 Phys. Rev. Lett. 571699
[3] Sauter Th, Neuhauser W, Blatt R and Toschek P E 1986 Phys. Rev. Lett. 171696
[4] Sauter Th, Blatt R, Neuhauser W and Toschek P E 1986 Opt. Commun 60287
[5] Cook R J and Kimble H J 1985 Phys. Rev. Lett. 541023
[6] Javanainen J 1986 Phys. Rev. A 332121
[7] Schenzle A, Devoe R G and Brewer R G 1986 Phys. Rev. A 332127
[81 Dalibard J and Cohen-Tannoudji C 1986 Eutrophys. Lett. 1441
[9] Kimble H J, Cook R J and Wells A L 1986 Phys. Rev. A 343190
[10] Schenzle A and Brewer R J 1986 Phys. Rev. A 343127
[11] Pegg D T, Loudon R and Knight P L 1986 Phys. Rev. A 334085
[12] Erber T and Putterman S 1985 Nature 31841
[13] Knight P L, Loudon R and Pegg D T 1986 Nature 323608
[14] Zoller P, Marte M and Walls D F 1987 Phys. Rev. A 35198
[15] Kim M S, Knight P L and Wodkiewicz K 1987 Opt. Commun. 82385
[16] Kim M S and Knight P L 1987 Phys. Rev. A 365265
[17] Nienhius G 1987 Phys. Rev. A 354639
[18] Porrati M and Putterman S P 1987 Phys. Rev. A 36929 ; 1989 Phys. Rev, A. 393010
[19] Agarwal G S, Lawande S V and D'Sousza R 1988 Phys. Rev. A 37444
[20] Erber T, Hammerling P, Hockney G, Porrati M and Putterman S 1989 Ann. Phys. 190254
[21] Glauber R J 1965 Quantum Optics and Electronics ed C Dewitt, A Blandin and C Cohen-Tannoudji (New York: Gordon and Breach)
[22] Barakat R and Blake J 1980 Phys. Rep. 60225
[23] Mandel L and Wolf E 1965 Rev. Mod. Phys. 37231 Sec. 6.2
[24] Mandel L 1979 Opt. Lett. 4205

